Robust Indoor Mobile Localization with a Semantic Augmented Route Network Graph

نویسندگان

  • Yan Zhou
  • Xianwei Zheng
  • Hanjiang Xiong
  • Ruizhi Chen
چکیده

In recent years, using smartphones to determine pedestrian locations in indoor environments is an extensively promising technique for improving context-aware applications. However, the applicability and accuracy of the conventional approaches are still limited due to infrastructure-dependence, and there is seldom consideration of the semantic information inherently existing in maps. In this paper, a semantically-constrained low-complexity sensor fusion approach is proposed for the estimation of the user trajectory within the framework of the smartphone-based indoor pedestrian localization, which takes into account the semantic information of indoor space and its compatibility with user motions. The user trajectory is established by pedestrian dead reckoning (PDR) from the mobile inertial sensors, in which the proposed semantic augmented route network graph with adaptive edge length is utilized to provide semantic constraint for the trajectory calibration using a particle filter algorithm. The merit of the proposed method is that it not only exploits the knowledge of the indoor space topology, but also exhausts the rich semantic information and the user motion in a specific indoor space for PDR accumulation error elimination, and can extend the applicability for diverse pedestrian step length modes. Two experiments are conducted in the real indoor environment to verify of the proposed approach. The results confirmed that the proposed method can achieve highly acceptable pedestrian localization results using only the accelerometer and gyroscope embedded in the phones, while maintaining an enhanced accuracy of 1.23 m, with the indoor semantic information attached to each pedestrian’s motion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating an Indoor space routing graph using semantic-geometric method

The development of indoor Location-Based Services faces various challenges that one of which is the method of generating indoor routing graph. Due to the weaknesses of purely geometric methods for generating indoor routing graphs, a semantic-geometric method is proposed to cover the existing gaps in combining the semantic and geometric methods in this study. The proposed method uses the CityGML...

متن کامل

designing and implementing a 3D indoor navigation web application

​During the recent years, the need arises for indoor navigation systems for guidance of a client in natural hazards and fire, due to the fact that human settlements have been complicating. This research paper aims to design and implement a visual indoor navigation web application. The designed system processes CityGML data model automatically and then, extracts semantic, topologic and geometric...

متن کامل

Indoor Localization using Place and Motion Signatures

Most current methods for 802.11-based indoor localization depend on either simple radio propagation models or exhaustive, costly surveys conducted by skilled technicians. These methods are not satisfactory for long-term, large-scale positioning of mobile devices in practice. This thesis describes two approaches to the indoor localization problem, which we formulate as discovering user locations...

متن کامل

Localization of Mobile Robot Based on Fusion of Artificial Landmark and RF TDOA Distance under Indoor Sensor Network

In this paper, we propose a robust and real‐time localization method for dynamic environments based on a sensor network; the method combines landmark image information obtained from an ordinary camera and distance information obtained from sensor nodes in an indoor environment. The sensor network provides an effective method for a mobile robot to adapt to changes and gu...

متن کامل

A Large-scale RF-based Indoor Localization System Using Low-complexity Gaussian Filter and Improved Bayesian Inference

The growing convergence among mobile computing device and smart sensors boosts the development of ubiquitous computing and smart spaces, where localization is an essential part to realize the big vision. The general localization methods based on GPS and cellular techniques are not suitable for tracking numerous small size and limited power objects in the indoor case. In this paper, we propose a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ISPRS Int. J. Geo-Information

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017